Кольцо. Определение

Определение 4.1.1. Кольцо (K , +, ) – это алгебраическая система с непустым множеством K и двумя бинарными алгебраическими операциями на нем, которые будем называть сложением и умножением . Кольцо является абелевой аддитивной группой, а умножение и сложение связаны законами дистрибутивности: (a + b )  c = a c + b c и с  (a + b ) = c a + c b для произвольных a , b , c K .

Пример 4.1.1. Приведем примеры колец.

1. (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – соответственно кольца целых, рациональных, вещественных и комплексных чисел с обычными операциями сложения и умножения. Данные кольца называются числовыми .

2. (Z /n Z , +, ) – кольцо классов вычетов по модулю n N с операциями сложения и умножения.

3. Множество M n (K ) всех квадратных матриц фиксированного порядка n N с коэффициентами из кольца (K , +, ) с операциями матричного сложения и умножения. В частности, K может быть равно Z , Q , R , C или Z /n Z приn N .

4. Множество всех вещественных функций, определенных на фиксированном интервале (a ; b ) вещественной числовой прямой, с обычными операциями сложения и умножения функций.

5. Множество полиномов (многочленов) K [x ] с коэффициентами из кольца (K , +, ) от одной переменной x с естественными операциями сложения и умножения полиномов. В частности, кольца полиномов Z [x ], Q [x ], R [x ], C [x ], Z /n Z [x ] приn N .

6. Кольцо векторов (V 3 (R ), +, ) c операциями сложения и векторного умножения.

7. Кольцо ({0}, +, ) с операциями сложения и умножения: 0 + 0 = 0, 0  0 = = 0.

Определение 4.1.2. Различают конечные и бесконечные кольца (по числу элементов множества K ), но основная классификация ведется по свойствам умножения. Различают ассоциативные кольца, когда операция умножения ассоциативна (пункты 1–5, 7 примера 4.1.1) и неассоциативные кольца (пункт 6 примера 4.1.1: здесь ,). Ассоциативные кольца делятся на кольца с единицей (есть нейтральный элемент относительно умножения) и без единицы , коммутативные (операция умножения коммутативна) и некоммутативные .

Теорема 4.1.1. Пусть (K , +, ) – ассоциативное кольцо с единицей. Тогда множество K * обратимых относительно умножения элементов кольца K – мультипликативная группа.

Проверим выполнение определения группы 3.2.1. Пусть a , b K * . Покажем, что a b K * .  (a b ) –1 = b –1  а –1  K . Действительно,

(a b )  (b –1  а –1) = a  (b b –1)  а –1 = a  1  а –1 = 1,

(b –1  а –1)  (a b ) = b –1  (а –1  a )  b = b –1  1  b = 1,

где а –1 , b –1  K – обратные элементы к a и b соответственно.

1) Умножение в K * ассоциативно, так как K – ассоциативное кольцо.

2) 1 –1 = 1: 1  1 = 1  1  K * , 1 – нейтральный элемент относительно умножения в K * .

3) Для  a K * , а –1  K * , так как (а –1)  a = a  (а –1) = 1
(а –1) –1 = a .

Определение 4.1.3. Множество K * обратимых относительно умножения элементов кольца (K , +, ) называют мультипликативной группой кольца .

Пример 4.1.2. Приведем примеры мультипликативных групп различных колец.

1. Z * = {1, –1}.

2. M n (Q ) * = GL n (Q ), M n (R ) * = GL n (R ), M n (C ) * = GL n (C ).

3. Z /n Z * – множество обратимых классов вычетов, Z /n Z * = { | (k , n ) = 1, 0  k < n }, при n > 1 | Z /n Z * | = (n ), где – функция Эйлера.

4. {0} * = {0}, так как в данном случае 1 = 0.

Определение 4.1.4. Если в ассоциативном кольце (K , +, ) с единицей группа K * = K \{0}, где 0 – нейтральный элемент относительно сложения, то такое кольцо называют телом или алгеброй с делением . Коммутативное тело называется полем .

Из данного определения очевидно, что в теле K *   и 1  K * , значит, 1  0, поэтому минимальное тело, являющееся полем, состоит из двух элементов: 0 и 1.

Пример 4.1.3.

1. (Q , +, ), (R , +, ), (C , +, ) – соответственно числовые поля рациональных, вещественных и комплексных чисел.

2. (Z /p Z , +, ) – конечное поле из p элементов, если p – простое число. Например, (Z /2Z , +, ) – минимальное поле из двух элементов.

3. Некоммутативным телом является тело кватернионов – совокупность кватернионов , то есть выражений вида h = a + bi + cj + dk , где a , b , c , d R , i 2 = = j 2 = k 2 = – 1, i j = k = – j i , j k = i = – k j , i k = – j = – k i , с операциями сложения и умножения. Кватернионы складываются и перемножаются почленно с учетом указанных выше формул. Для всякого h  0 обратный кватернион имеет вид:
.

Различают кольца с делителями нуля и кольца без делителей нуля.

Определение 4.1.5. Если в кольце найдутся ненулевые элементы a и b такие, что a b = 0, то их называют делителями нуля , а само кольцо – кольцом с делителями нуля . В противном случае кольцо называется кольцом без делителей нуля .

Пример 4.1.4.

1. Кольца (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – кольца без делителей нуля.

2. В кольце (V 3 (R ), +, ) каждый отличный от нуля элемент является делителем нуля, поскольку
для всех
V 3 (R ).

3. В кольце матриц M 3 (Z ) примерами делителей нуля являются матрицы
и
, так как A B = O (нулевая матрица).

4. В кольце (Z /n Z , +, ) с составным n = k m , где 1 < k , m < n , классы вычетов иявляются делителями нуля, так как.

Ниже приведем основные свойства колец и полей.

Краткое описание

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:


Прикрепленные файлы: 1 файл

Кольцо. Определение. Примеры. Простейшие свойства колец. Гомоморфизм и изоморфизм колец.

Определение. Кольцом называется алгебра К = ‹К, +, -, ·, 1› типа (2, 1, 2, 0), главные операции которой удовлетворяют следующим условиям:

  1. алгебра ‹К, +, -› есть абелева группа;
  2. алгебра ‹К, ·, 1› есть моноид;
  3. умножение дистрибутивно относительно сложения, то есть для любых элементов a, b, c из К

(a + b) · c = a · c + b · c, c· (a + b) = c · a + c · b.

Основное множество К кольца К обозначается также через |К|. Элементы множества К называются элементами кольца К.

Опред. Группа ‹К, +, -› называется аддитивной группой кольца К. Нуль этой группы, то есть нейтральный элемент относительно сложения, называется нулем кольца и обозначается 0 или 0 К.

Опред. Моноид ‹К, ·, 1› называется мультипликативным моноидом кольца К. Элемент 1, обозначаемый также через 1 К, являющийся нейтральным относительно умножения, называется единицей кольца К.

Кольцо К называется коммутативным, если a · b = b · a для любых элементов a , b кольца. Кольцо К называется нулевым, если |К| = {0 К }.

Опред. Кольцо К называется областью целостности, если оно коммутативно, 0 К ≠ 1 К и для любых a, b Î К из a· b = 0 следует a = 0 или b = 0.

Опред. Элементы a и b кольца К называются делителями нуля, если a ≠ 0, b ≠ 0 или ba = 0. (Любая область целостности не имеет делителей нуля.)

Пример. Пусть К – множество всех действительных функций, определенных на множестве R действительных чисел. Сумма f + g, произведение f · g, функция

f(-1) и единичная функция 1 определяются: (f + g) (х) = f (х) + g(х);

(f · g)(х) = f(х) · g(х); (–f) (х) =–f (х); 1(х) = 1. Непосредственная проверка показывает, что алгебра ‹К, +, -, ·, 1› является коммутативным кольцом.

Простейшие свойства. Пусть К – кольцо. Так как алгебра ‹К, +, -› есть абелева группа, то для любых элементов a, b, из К уравнение b + x = a имеет единственное решение a + (-b), которое обозначается также через a – b.

  1. если a + b = a, то b = 0;
  2. если a + b = 0, то b = -a;
  3. – (-a) = a;
  4. 0 · a = a · 0 = a;
  5. (-a)b = a(-b) = -(ab);
  6. (-a)(-b) = a · b;
  7. (a – b)c = ac – bc и c(a – b) = ca – cb.

Пусть К = ‹К, +, -, ◦, 1› и К` = ‹К`, +, -, ·, 1`› - кольца. Говорят, что отображение h множества К в К` сохраняет главные операции кольца К, если выполнены условия:

  1. h(a+b)=h(a)+h(b) для любых a, b из кольца К;
  2. h(-a)=-h(a) для любого a из К;
  3. h(a·b) = h(a)◦h(b) для любых a, b из К;
  4. h(1) = 1`.

Опред. Гомоморфизмом кольца К в (на) кольцо К` называется отображение множества К в (на) К`, сохраняющее все главные операции кольца К. Гомоморфизм кольца К на К` называется эпиморфизмом.

Опред. Гомоморфизм h кольца К на кольцо К` называется изоморфизмом, если h является инъективным отображением множества K на К`. Кольца К и К` называются изоморфными, если существуют изоморфизм кольца К на кольцо К`.


Определение 2.5. Кольцом называют алгебру

R = (R, +, ⋅,0 , 1 ),

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых a, b, c ∈ R выполняются равенства:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. а + 0 = a;
  4. для каждого а ∈ R существует элемент а", такой, что a+a" = 0
  5. а-(b-с) = (а-b)-с;
  6. а ⋅ 1 = 1 ⋅ а = а;
  7. а⋅(b + с) =а⋅b + а⋅с, (b + с) ⋅ а = b⋅ а + с⋅а.

Операцию + называют сложением кольца , операцию умножением кольца , элемент 0 - нулем кольца , элемент 1 - единицей кольца .

Равенства 1-7, указанные в определении, называют аксиомами кольца . Рассмотрим эти равенства с точки зрения понятия группы и моноида .

Аксиомы кольца 1-4 означают, что алгебра (R, +, 0 ), сигнатура которой состоит только из операций сложения кольца + и нуля кольца 0 , является абелевой группой . Эту группу называют аддитивной группой кольца R и говорят также, что по сложению кольцо есть коммутативная (абелева) группа.

Аксиомы кольца 5 и 6 показывают, что алгебра (R, ⋅, 1), сигнатура которой включает только умножение кольца ⋅ и еди- единицу кольца 1, есть моноид. Этот моноид называют мультипликативным моноидом кольца R и говорят, что по умножению кольцо есть моноид.

Связь между сложением кольца и умножением кольца устанавливает аксиома 7, согласно которой операция умножения дистрибутивна относительно операции сложения.

Учитывая сказанное выше, отметим, что кольцо - это алгебра с двумя бинарными и двумя нульарными операциями R =(R, +, ⋅,0 , 1 ), такая, что:

  1. алгебра (R, +, 0 ) - коммутативная группа;
  2. алгебра (R, ⋅, 1 ) - моноид;
  3. операция ⋅ (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

Замечание 2.2. В литературе встречается иной состав аксиом кольца, относящихся к умножению. Так, могут отсут- отсутствовать аксиома 6 (в кольце нет 1 ) и аксиома 5 (умножение не ассоциативно). В этом случае выделяют ассоциативные коль- кольца (к аксиомам кольца добавляют требование ассоциативности умножения) и кольца с единицей. В последнем случае добавля- добавляются требования ассоциативности умножения и существования единицы.

Определение 2.6. Кольцо называют коммутативным , если его операция умножения коммутативна.

Пример 2.12. а. Алгебра (ℤ, +, ⋅, 0, 1) есть коммутативное кольцо. Отметим, что алгебра (ℕ 0 , +, ⋅, 0, 1) кольцом не будет, поскольку (ℕ 0 , +) - коммутативный моноид, но не группа.

б. Рассмотрим алгебру ℤ k = ({0,1,..., k - 1}, ⊕ k , ⨀ k , 0,1) (к>1) с операцией ⊕ k сложения по модулю л и ⨀ k (умножения по модулю л). Последняя аналогична операции сложения по модулю л: m ⨀ k n равно остатку от деления на k числа m ⋅ n. Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k.

в. Алгебра (2 A , Δ, ∩, ∅, А) - коммутативное кольцо, что следует из свойств пересечения и симметрической разности множеств.

г. Пример некоммутативного кольца дает множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц. Единицей этого кольца является единичная матрица, а нулем - нулевая.

д. Пусть L - линейное пространство. Рассмотрим множество всех линейных операторов, действующих в этом пространстве.

Напомним, что суммой двух линейных операторов А и В называют оператор А + В , такой, что (А + В ) х = Ах + Вх , х L .

Произведением линейных операторов А и В называют линей- линейный оператор АВ , такой, что (АВ )х = А (Вх ) для любого х L .

Используя свойства указанных операций над линейными операторами, можно показать, что множество всех линейных операторов, действующих в пространстве L , вместе с операциями сложения и умножения операторов образует кольцо. Нулем этого кольца служит нулевой оператор , а единицей - тождественный оператор .

Это кольцо называют кольцом линейных операторов в линейном пространстве L. #

Аксиомы кольца называют также основными тождествами кольца . Тождество кольца - это равенство, ливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца. Основные тождества постулируются, и из них затем могут быть выведе- выведены как следствия другие тождества. Рассмотрим некоторые из них.

Напомним, что аддитивная группа кольца коммутативна и в ней определена операция вычитания .

Теорема 2.8. В любом кольце выполняются следующие тождества:

  1. 0 ⋅ а = a ⋅ 0 = 0 ;
  2. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b);
  3. (a-b) ⋅ c = a ⋅ c - b ⋅ c, c ⋅ (a-b) = c ⋅ a - c ⋅ b.

◀Докажем тождество 0 ⋅ а = 0 . Запишем для произвольного а:

a+0 ⋅ a = 1 ⋅ a + 0 ⋅ a = (1 +0 ) ⋅ a = 1 ⋅ a = a

Итак, а + 0 ⋅ а = а. Последнее равенство можно рассматривать как уравнение в аддитивной группе кольца относительно неизвестного элемента 0 ⋅ а. Так как в аддитивной группе любое уравнение вида а + х = b имеет единственное решение х=b - а, то 0 ⋅ а = а - а = 0 . Тождество а⋅ 0 = 0 доказывается аналогично.

Докажем теперь тождество - (a ⋅ b) = a ⋅ (-b). Имеем

a ⋅ (-b)+a ⋅ b = a ⋅ ((-b) + b) = a ⋅ 0 = 0 ,

откуда а ⋅ (-b) = -(а ⋅ b). Точно так же можно доказать, что (-a) ⋅ b = -(a ⋅ b).

Докажем третью пару тождеств. Рассмотрим первое из них. С учетом доказанного выше имеем

а ⋅ (b - с) = a ⋅ (b+(-c)) = a ⋅ b + a ⋅ (-c) =a ⋅ b - a ⋅ c,

т.е. тождество справедливо. Второе тождество этой пары доказывается аналогично.

Следствие 2.1 . В любом кольце справедливо тождество (-1 ) ⋅ х = x ⋅ (-1 ) = -x.

◀Указанное следствие вытекает из второго тождества теоремы 2.8 при a = 1 и b = x.

Первые два тождества из доказанных в теореме 2.8 выражают свойство, называемое аннулирующим свойством нуля в кольце. Третья же пара тождеств указанной теоремы выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания. Таким образом, производя вычисления в любом кольце, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Ненулевые элементы а и b кольца R называют делителями нуля , если а ⋅ b = 0 или b ⋅ а = 0 . Пример кольца с делителем нуля дает любое кольцо вычетов по модулю k, если k - составное число. В этом случае произведение по модулю k любых тип, дающих при обычном перемножении число, кратное k, будет равно нулю. Например, в кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку 2 ⨀ 6 3 = 0. Другой пример дает кольцо квадратных матриц фиксированного порядка (не меньшего двух). Например, для матриц второго порядка имеем

При отличных от нуля а и b приведенные матрицы являются делителями нуля.

По умножению кольцо является только моноидом. Поставим вопрос: в каких случаях кольцо по умножению будет группой? Прежде всего заметим, что множество всех элементов кольца, в котором 0 1 , не может образовывать группы по умножению, так как нуль не может иметь обратного. Действительно, если предположить, что такой элемент 0" существует, то, с одной стороны, 0 ⋅ 0" = 0" ⋅ 0 = 1 , а с другой - 0 ⋅ 0" = 0" ⋅ 0 = 0 , откуда 0 = 1. Это противоречит условию 0 1 . Таким образом, поставленный выше вопрос можно уточнить так: в каких случаях множество всех ненулевых элементов кольца образует группу по умножению?

Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению уже хотя бы потому, что это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.

Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют телом , коммутативное тело - полем , а группу ненулевых элементов тела (поля) по умножению - мультипликативной группой этого тела (поля ). Согласно определению, поле есть частный случай кольца, в котором операции обладают дополнительными свойствами. Выпишем все свойства, выполнение которых требуется для операций поля. Их еще называют аксиомами поля .

Поле есть алгебра F = (F, +, ⋅, 0, 1), сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. a+0 = a;
  4. для каждого а ∈ F существует элемент -а, такой, что a+ (-a) = 0;
  5. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
  6. a ⋅ b = b ⋅ a
  7. a ⋅ 1 = 1 ⋅ a = a
  8. для каждого а ∈ F, отличного от 0, существует элемент а -1 , такой, что а ⋅ а -1 = 1;
  9. a ⋅ (b+c) = a ⋅ b + a ⋅ c.

Пример 2.13. а. Алгебра (ℚ, +, ⋅, 0, 1) есть поле, называемое полем рациональных чисел .

б. Алгебры (ℝ , +, ⋅, 0, 1) и (ℂ, +, ⋅, 0, 1) есть поля, называемые полями действительных и комплексных чисел соответственно.

в. Примером тела, не являющегося полем, может служить алгебра кватернионов . #

Итак, мы видим, что известным законам сложения и умножения чисел соответствуют аксиомы поля. Занимаясь числовыми расчетами, мы „работаем в полях", а именно имеем дело преимущественно с полями рациональных и вещественных чисел, иногда „переселяемся" в поле комплексных чисел.

Определение 4.1.1. Кольцо (K , +, ) – это алгебраическая система с непустым множеством K и двумя бинарными алгебраическими операциями на нем, которые будем называть сложением и умножением . Кольцо является абелевой аддитивной группой, а умножение и сложение связаны законами дистрибутивности: (a + b )  c = a c + b c и с  (a + b ) = c a + c b для произвольных a , b , c K .

Пример 4.1.1. Приведем примеры колец.

1. (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – соответственно кольца целых, рациональных, вещественных и комплексных чисел с обычными операциями сложения и умножения. Данные кольца называются числовыми .

2. (Z / n Z , +, ) – кольцо классов вычетов по модулю n N с операциями сложения и умножения.

3. Множество M n (K ) всех квадратных матриц фиксированного порядка n N с коэффициентами из кольца (K , +, ) с операциями матричного сложения и умножения. В частности, K может быть равно Z , Q , R , C или Z /n Z приn N .

4. Множество всех вещественных функций, определенных на фиксированном интервале (a ; b ) вещественной числовой оси, с обычными операциями сложения и умножения функций.

5. Множество полиномов (многочленов) K [x ] с коэффициентами из кольца (K , +, ) от одной переменной x с естественными операциями сложения и умножения полиномов. В частности, кольца полиномов Z [x ], Q [x ], R [x ], C [x ], Z /n Z [x ] приn N .

6. Кольцо векторов (V 3 (R ), +, ) c операциями сложения и векторного умножения.

7. Кольцо ({0}, +, ) с операциями сложения и умножения: 0 + 0 = 0, 0  0 = = 0.

Определение 4.1.2. Различают конечные и бесконечные кольца (по числу элементов множества K ), но основная классификация ведется по свойствам умножения. Различают ассоциативные кольца, когда операция умножения ассоциативна (пункты 1–5, 7 примера 4.1.1) и неассоциативные кольца (пункт 6 примера 4.1.1: здесь , ). Ассоциативные кольца делятся на кольца с единицей (есть нейтральный элемент относительно умножения) и без единицы , коммутативные (операция умножения коммутативна) и некоммутативные .

Теорема 4.1.1. Пусть (K , +, ) – ассоциативное кольцо с единицей. Тогда множество K * обратимых относительно умножения элементов кольца K – мультипликативная группа.

Проверим выполнение определения группы 3.2.1. Пусть a , b K * . Покажем, что a b K * .  (a b ) –1 = b –1  а –1  K . Действительно,

(a b )  (b –1  а –1) = a  (b b –1)  а –1 = a  1  а –1 = 1,

(b –1  а –1)  (a b ) = b –1  (а –1  a )  b = b –1  1  b = 1,

где а –1 , b –1  K – обратные элементы к a и b соответственно.

1) Умножение в K * ассоциативно, так как K – ассоциативное кольцо.

2) 1 –1 = 1: 1  1 = 1  1  K * , 1 – нейтральный элемент относительно умножения в K * .

3) Для  a K * , а –1  K * , так как (а –1)  a = a  (а –1) = 1
(а –1) –1 = a .

Определение 4.1.3. Множество K * обратимых относительно умножения элементов кольца (K , +, ) называют мультипликативной группой кольца .

Пример 4.1.2. Приведем примеры мультипликативных групп различных колец.

1. Z * = {1, –1}.

2. M n (Q ) * = GL n (Q ), M n (R ) * = GL n (R ), M n (C ) * = GL n (C ).

3. Z /n Z * – множество обратимых классов вычетов, Z /n Z * = { | (k , n ) = 1, 0  k < n }, при n > 1 | Z /n Z * | = (n ), где – функция Эйлера.

4. {0} * = {0}, так как в данном случае 1 = 0.

Определение 4.1.4. Если в ассоциативном кольце (K , +, ) с единицей группа K * = K \{0}, где 0 – нейтральный элемент относительно сложения, то такое кольцо называют телом или алгеброй с делением . Коммутативное тело называется полем .

Из данного определения очевидно, что в теле K *   и 1  K * , значит, 1  0, поэтому минимальное тело, являющееся полем, состоит из двух элементов: 0 и 1.

Пример 4.1.3.

1. (Q , +, ), (R , +, ), (C , +, ) – соответственно числовые поля рациональных, вещественных и комплексных чисел.

2. (Z /p Z , +, ) – конечное поле из p элементов, если p – простое число. Например, (Z /2Z , +, ) – минимальное поле из двух элементов.

3. Некоммутативным телом является тело кватернионов – совокупность кватернионов, то есть выражений вида h = a + bi + cj + dk , где a , b , c , d R , i 2 = = j 2 = k 2 = –1, i j = k = – j i , j k = i = – k j , i k = – j = – k i , с операциями сложения и умножения. Кватернионы складываются и перемножаются почленно с учетом указанных выше формул. Для всякого h  0 обратный кватернион имеет вид:
.

Различают кольца с делителями нуля и кольца без делителей нуля.

Определение 4.1.5. Если в кольце найдутся ненулевые элементы a и b такие, что a b = 0, то их называют делителями нуля , а само кольцо – кольцом с делителями нуля . В противном случае кольцо называется кольцом без делителей нуля .

Пример 4.1.4.

1. Кольца (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – кольца без делителей нуля.

2. В кольце (V 3 (R ), +, ) каждый отличный от нуля элемент является делителем нуля, поскольку
для всех
V 3 (R ).

3. В кольце матриц M 3 (Z ) примерами делителей нуля являются матрицы
и
, так как A B = O (нулевая матрица).

4. В кольце (Z / n Z , +, ) с составным n = k m , где 1 < k , m < n , классы вычетов и являются делителями нуля, так как .

Ниже приведем основные свойства колец и полей.

Понятие кольца, простейшие свойства колец.

Алгебра (K , +, ∙) называется кольцом, если выполняются следующие аксиомы:

1. (K , +) – коммутативная группа;

2.
a(b+c ) = ab+ac (b+c )a = ba+ca ;

3. a (bc ) = (ab ) c .

Если операция умножения в кольце коммутативная, то кольцо называется коммутативным.

Пример. Алгебры (Z, +, ∙), (Q , +, ∙), (R , + ,∙) являются кольцами.

Кольцо обладает следующими свойствами: имеет место

1) a + b = a => b = 0;

2) a + b = 0 => b = - a ;

3) – (- a ) = a ;

4) 0∙a = a ∙0 = 0 (0 – ноль кольца);

5) (-a )∙b = a ∙(-b ) = -a b ;

6) (a b )∙c = a c b c , где a – b = a + (-b) .

Докажем свойство 6. (a – b )∙c = (a + (-b ))∙c = a c + (-b )∙c = a c +(-b c )= =a c – b c .

Пусть (K A K называется подкольцом кольца (K ,+,∙), если оно является кольцом относительно операций в кольце (K , +, ∙).

Теорема. Пусть (K , +, ∙) – кольцо. Непустое подмножество A K , является подкольцом кольца К тогда и только тогда, когда
a - b , a b
.

Пример. Кольцо (Q, +, ∙) является подкольцом кольца (А , +, ∙), где A = ={a + b | a , b Q}.

Понятие поля. Простейшие свойства полей .

Определение. Коммутативное кольцо (Р , +, ∙) с единицей, где ноль кольца не совпадает с единицей кольца, называется полем, если
a ≠0 существует ему обратный элемент а -1 , а а -1 = е , е – единица кольца.

Все свойства колец справедливы для полей. Для поля (Р ,+,∙) справедливы также следующие свойства:

1)
a ≠0 уравнение ах = b имеет решение и притом единственное;

2) ab = e |=> a ≠0 b = а -1 ;

3)

c ≠0 ac = bc => a=b ;

4) ab = 0
a = 0 b = 0;

5) ad = bc (b ≠0, d ≠0);

6)
;

.

Пример. Алгебры (Q, +, ∙), (А , +, ∙), где А = {a +b | a , b Q}, (R , +, ∙) – поля.

Пусть (Р ,+,∙) – поле. Непустое подмножество F P , являющееся полем относительно операции в поле (Р ,+,∙) называется подполем поля Р .

Пример. Поле (Q,+,∙) является подполем поля действительных чисел (R,+,∙).

Задачи для самостоятельного решения

1. Покажите, что множество относительно операции умножения есть абелева группа.

2. На множестве Q\{0}определена операция а b =
. Докажите, что алгебра (Q\{0},) является группой.

3. На множестве Z задана бинарная алгебраическая операция, определенная по правилу, а b = а+ b 2. Выясните, является ли алгебра (Z,) группой.

4. На множестве А = {(a , b )
} определена операция (а, b ) (c , d ) = (ac bd , ad + bc ). Докажите, что алгебра (А, ) – группа.

5. Пусть Т – множество всех отображений
заданных правилом
, где а, b Q, a
Докажите, что Т является группой относительно композиции отображений.

6. Пусть А ={1,2,…,n }. Взаимнооднозначное отображение f :
называется подстановкой n – ой степени. Подстановку n – ой степени удобно записывать виде таблицы
, где Произведение двух подстановок
множества А определяется как композиция отображений . По определению

Доказать, что множество всех подстановок n – ой степени является группой относительно произведения подстановок.

7. Выясните, образует ли кольцо относительно сложения, умножения:

a ) N ; b ) множество всех нечетных целых чисел; c)множество всех четных целых чисел; d ) множество чисел вида
где а, b

8. Является ли кольцом множество К ={а +b
} относительно операций сложения и умножения.

9. Покажите, что множество А ={a +b } относительно операций сложения и умножения есть кольцо.

10. На множестве Z определены две операции: a b =a +b +1, ab = ab + a + b . Доказать, что алгебра

11. На множестве классов вычетов по модулю m заданы две бинарные операции:Доказать, что алгебра
коммутативное кольцо с единицей.

12 . Опишите все подкольца кольца
.

13. Выясните, какие из следующих множеств действительных чисел являются полями относительно операций сложения и умножения:

a ) рациональные числа с нечетными знаменателями;

b ) числа вида
c рациональными а, b ;

c ) числа вида
с рациональными а , b ;

d ) числа вида
с рациональными a , b , c .

§5. Поле комплексных чисел. Операции над комплексными

числами в алгебраической форме

Поле комплексных чисел .

Пусть заданы две алгебры (А ,+,∙), (Ā , , ◦). Отображение f : A в(на) >Ā , удовлетворяющее условиям:
f (a +b ) = f (a ) f (b ) f (a b ) = f (a ) ◦ f (b ), называется гомоморфизмом алгебры (А , +, ∙) в(на) алгебру (Ā , , ◦).

Определение. Гомоморфное отображение f алгебры (А , +, ∙) на алгебру (Ā , , ◦) называется изоморфным отображением, если отображение f множества А на Ā инъективно. С точки зрения алгебры изоморфные алгебры неразличимы, т.е. обладают одинаковыми свойствами.

Над полем R уравнение вида x 2 +1 = 0 не имеет решений. Построим поле, которое содержит подполе, изоморфное полю (R ,+,∙), и в котором уравнение вида x 2 +1 = 0 имеет решение.

На множестве C = R × R = {(a , b ) | a , b R } введем операции сложения и умножения следующим образом: (a , b ) (c , d ) = (a + c , b + d ), (a , b ) ◦ (c , d ) = (ac -bd , ad +bc ). Нетрудно доказать, что алгебра (C, ,◦) коммутативное кольцо с единицей. Пара (0,0) – ноль кольца, (1,0) – единица кольца. Покажем, что кольцо (С , ,◦) – поле. Пусть (a , b ) C, (a , b ) ≠ (0,0) и (x ,y ) C такая пара чисел, что (a , b )◦(x , y ) = (1,0). (a , b )◦(x , y ) = (1,0) (ax by , ay + bx ) = (1,0)

(1)

Из (1) =>
,
(a , b ) -1 =
. Следовательно (С, +, ∙) – поле. Рассмотрим множество R 0 = {(a ,0) | aR }. Так как (a ,0) (b ,0) = (a - b ,0)R 0 , (a ,0)◦(b ,0) = (ab ,0) R 0 ,
(a ,0) ≠ (0,0) (a ,0) -1 = (,0) R 0 , то алгебра (R 0, ,◦) – поле.

Построим отображение f : R
R
0 , определенное условием f (a )=(a ,0) . Так как f – биективное отображение и f (a + b )= (a + b ,0) = =(a ,0)(b ,0) = f (a )f (b ), f (a b ) = (a b ,0) = (a ,0)◦(b ,0) =f (a )◦f (b ), то f – изоморфное отображение. Следовательно, (R , +,∙)
(R 0, ,◦). (R 0, ,◦) – поле действительных чисел.

Покажем, что уравнение вида х 2 +1 = 0 в поле (C , , ◦) имеет решения. (х,у ) 2 + (1,0) = (0,0) (x 2 - y 2 +1, 2xy ) = (0,0)

(2)

(0,1), (0, -1) – решения системы (2).

Построенное поле (C , ,◦) называется полем комплексных чисел, а его элементы комплексными числами.

Алгебраическая форма комплексного числа. Операции над комплексными числами в алгебраической форме.

Пусть (С, +, ∙) поле комплексных чисел,
C,
=(a , b ). Так как (R 0 ,+, ∙) (R , +, ∙), то любую пару (a ,0) отождествим с действительным числом a . Обозначим через ί = (0,1). Так как ί 2 = (0,1)∙(0,1) = (-1,0) = -1, то ί называется мнимой единицей. Представим комплексное число
=(a ,b ) в виде: =(a ,b )=(a ,0) +(b ,0) ◦(0,1)=a +b ∙ί. Представление комплексного числа в виде, = а + b ί называется алгебраической формой записи числа . a называется действительной частью комплексного числа и обозначается Re, b – мнимая часть комплексного числа и обозначается Im.

Сложение комплексных чисел:

α = а+ , β = с+ d ί , α +β = (а, b ) + (c , d ) = (a + c , b + d ) = a + c + (b + d )ί.

Умножение комплексных чисел:

α∙β = (a , b )(c , d ) = (a c b d , a d + b c ) = a c - b d + (a d + b c )ί.

Чтобы найти произведение комплексных чисел а+ и с+ d ί , нужно умножить а+ на с+ d ί как двучлен на двучлен, учитывая, что ί 2 = -1.

Частным от деления на β , β ≠ 0 называется такое комплексное число γ, что = γ∙β .

= γ∙β => γ = ∙β -1 . Так как
, то =∙β -1 = =(a , b )∙
Таким образом

Эту формулу можно получить, если числитель и знаменатель дроби умножить на комплексное число, сопряженное знаменателю, т.е. на

с – .

Пример. Найти сумму, произведение, частное комплексных чисел

2+ 3ί , β = 3 - 4ί .

Решение. + β =(2 + 3ί ) + (3 – 4ί ) =5– ί, ∙β = (2 + 3ί) (3– 4ί ) = 6 –8ί + 9ί – –12ί 2 = 18 + ί .

§6. Извлечение корня n -ой степени из комплексного числа в тригонометрической форме

Тригонометрическая форма комплексного числа.

На плоскости в прямоугольной системе координат комплексное число

z = a + будем изображать точкой А (а, b ) или радиусом вектором
.

Изобразим комплексное число z = 2 – 3ί .

Определение. Число
называется модулем комплексного числа z = a + и обозначается | z |.

Угол, образованный между положительным направлением оси Ох и радиусом вектором , изображающим комплексное число z = a + , называется аргументом числа z и обозначается Arg z .

Argz определен с точностью до слагаемое 2πk , .

Аргумент комплексного числа z , удовлетворяющий условию 0≤ < 2π , называется главным значением аргумента комплексного числа z и обозначается arg z .

Из OAA 1 =>a =
cos, b = sin
. Представление комплексного числа z = a + в виде z = r (cos+ ί sin) называется тригонометрической формой записи числа z (r =). Чтобы записать комплексное число z = a + в тригонометрической форме, необходимо знать |z | и Arg z , которые определяются из формул
, cos =
sin =

Пусть z 1 = r 1 (cos φ 1 + ί sin φ 1), z 2 = r 2 (cos φ 2 + ί sin φ 2). Тогда z 1∙ z 2 = =r 1∙ r 2 [(cosφ 1 ∙cosφ 2 – sin φ 1∙ sin φ 2)+i ]= r 1∙ r 2 [(cos (φ 1+ φ 2) + i sin (φ 1+ φ 2)] . Отсюда следует, что |z 1 z 2 | = |z 1 | |z 2 |, Arg z 1 ∙z 2 = Arg z 1 + Arg z 2 .

Arg
Arg– Arg.

Извлечение корня n – ой степени из комплексного числа в тригонометрической форме.

Пусть z C , n N . n – ой степенью комплексного числа z называется произведение
обозначается оно z n . Пусть m =- n . По определению положим, что
z≠0, z 0 = 1, z m = . Если z =r (cosφ + ί sinφ ) , то z n =

= r n (cos + ί sin). При r = 1 имеем z n = cos + ί sin – формула Муавра. Формула Муавра имеет место
.

Корнем n z называется такое комплексное число ω , что ω n = z . Справедливо утверждение.

Теорема. Существует n различных значений корня n –ой степени из комплексного числа z = r (cosφ + ί sinφ ) . Все они получаются из формулы при k = 0, 1, … , n -1. В этой формуле
– арифметический корень.

Обозначим через, ω 0 , ω 1 ,…, ω n -1 – значения корня n -ой степени из z , которые получаются при k = 0, 1, ... , n -1. Так как |ω 0 | = |ω 1 | = |ω 2 |= … =|ω n -1 |,

arg ω 0 = , ω 1 = arg ω 0 +
, … , arg ω n -1 = arg ω n - 2 + , то комплексные числа ω 0 , ω 1 ,…, ω n -1 на плоскости изображаются точками круга с радиусом равным
и делят этот круг на n равных частей.